
draft 5 

A b s
Deriva
origina
comple
shapes
equiva
higher 
determ
combin
illusory
scaling
for ide
key fea

Key W
RECON

1  I

In a lite
the dat
more u
to emb
concer
at the c
propert
better r
the use
unique
for obj

Part of
mathem
through
derivat
approa
derivat
develo
have a 
discont

Deriva
except 
process
10/10/1999 1

Features of Derivative Continuity in Shape
PHILIP F. HENSHAW

167 W 87th St New York NY 10024
for publication IJPRAI 12/99

                            id@synapse9.com 

t r a c t
tive continuity is a distributed invariant relationship between parts of flowing shapes.  The
l techniques presented here were developed for making the behavioral dynamics of
x processes more recognizable, but are equally applicable to assisting in the recognition of

 in images.   Regularizing a sequence using a constraint of derivative continuity is
lent to using a bimodal smoothing kernel, producing a distinct bias for reducing variation on
derivative levels, sharply defining shape with minimal suppression of shape. To help
ine where reconstructing shapes this way is valid a test was developed to help distinguish
ations of noise and smooth shapes from random walks. This helps distinguish between
 and genuine data shapes, but also exposes a flaw in using this and other measures of
 behavior for diagnostic purposes.  Gaussian scale space techniques in use for some time
ntifying reliable landmarks in the shapes of outlines, are demonstrated for use in identifying
tures of shape in time series.

ords: PATTERN RECOGNITION, DERIVATIVE CONTINUITY, REGULARIZATION,
STRUCTION, SMOOTHING KERNELS, CONNECTILES, FRACTAL EXPONENT, SCALE SPACE .

n t r o d u c t i o n

ral sense, equations that represent physical behaviors are simplifications of the shapes of
a gathered about those behaviors, converted to a more useful form.   That form may be
seful because of its compactness and ease of manipulation, but also frequently for seeming
ody the very structure of the behavior whose shape it imitates.  The methods reported here
n one of the invariant relationships between near bye points in equations with smooth shape
ore of the special relationship between equations and nature,  derivative continuity.  The
y is used here, , to regulate non-parametric representations of shapes with the object of
epresenting underlying behavior and its differential structures.  That may be preferred over
 of equations for the purpose in preliminary investigations, when the subjects of study are
ly individual or transient, or for identifying natural markers of shape or behavioral structure
ect or process recognition.

 the underlying effort was to define continuous derivatives for sequences, using the
atical definition of the derivative and parsimony to construct smooth curves passing
 given points by iteration.   For mathematical functions, having a slope at a point, a

ive, is determined by whether the slopes, between a given point and points on the curve
ching it from opposite directions, come to the same value. This definition and test for a
ive has been well worked out for mathematical functions for a long time, originally
ped by Newton and Leibnetz in the invention of calculus4.  Stated simply, curves which
slope at every point change by continuous progressions in direction rather than
inuous steps in magnitude, and represent distributed structures of connection.

tive continuity, interestingly, is not defined for the smooth flow of physical processes,
in equations representing them, nor for smooth shapes in data.   For physical shapes and
es the connectedness of smooth flows is a presumption,  one that has proved to be
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singularly useful in allowing the representation of physical behavior with equations. There are, of
course, disjointed, random, fractile and chaotic patterns that seem common as well. In fact all
things and processes are so full of gaps as to seem perfectly discontinuous in ultimate
construction.   Still the great success of presuming continuity, provides direct support for
considering it as an invariant physical principle of meaningful shape, even if not well understood.
Except for behaviors related to the physics of the conservation laws, the physical basis for
derivative continuity in nature is relatively unstudied..   It is this study of the physical basis of
continuity that  has motivated much of this work.  Progress on that wider interest is fairly limited
but it has produced some techniques that should be  independently useful.

1.1 Related Issues and Methods

The object of generalizing data shapes is to create features that distinguish the various subjects
represented in scattered points of data.  This requires applying constraints to what would otherwise
be 'ill-posed' problems, applying various assumptions regarding the non-accidental character of
nature as discussed by Wechsler17 in relation to the problems of computer vision and artificial
intelligence.   Derivative continuity is typically part of the constraint applied in the use of
Lagrange multipliers17, for example, as well as in fitting 'least energy' surfaces such as with the
level set approach18 , because the constraints applied are continuous functions.   Continuity can
also be applied using constraints on local connections between points that are weaker than
optimized equations, with the benefit of preserving subtle and transient characteristics of shape
that would otherwise be lost.

To determine whether it is appropriate to assume underlying continuity and the validity of
apparent statistical trends or shapes, variation scaling and range tests3,5,11 have been used.  These
same tests underlie the measures of fractile dimension for natural scaling patterns and have been
used to identify a wide range of apparent fractile patterns in nature.   One of the invariants of
natural data, however, is a presence of mixed signals, originating from mixed sources.    That all
variation scaling and range tests are compromised by sensitivity to mixed signals has been noted16

but is not widely investigated.   Because some the measures display differing sensitivity to
different data structures, however, better ways to separately identify components of mixed types of
data may be developed.

Once meaningful data shapes are found it is common to use non-linear operators to isolate
identifiable landmarks8.    The Gaussian scale space methods7,12,13,15 , in simple terms, use
inflection points on a curve that are relatively invariant to smoothing as identifying marks of
shape.   In concept, though not yet in practice, the location and kind of derivative inflection points
on a smooth shape can be read like a bar-code, uniquely identifying given subjects.  Given
sufficiently accurate representation of shapes, various other details of the general differential
structure can also be tested for robustness and used as identifying marks.   While most work done
in the area concerns the outline shapes of objects in visual images the method is also directly
adaptable to identifying scales and landmarks of differential structure in time series.

2  M e a n s  a n d  M e t h o d s

2.1 Derivative interpolation and smoothing

A smoothing 'kernel' is a distribution of factors with a sum of one, such as:
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giving a Gaussian distribution of weights to group of points, used to calculate contributions from
neighboring points in smoothing a sequence by :
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Here a is the number of points on either side of each point i in sequence Y of length j.   The kernel
k will be undefined for values of i near 0 and j unless altered in those regions. Repeated
smoothing of sequence Y by kernel k is indicated Um().

Gaussian shaped kernels (figure 1, k1) are considered to be ideal for scale space techniques 7, 14

particularly for their broad invariance to transformation15.  The kernel k2 shows linear center
weighting for comparison.  These definitions may be applied to any size kernel,  indicated k1,15 for
example, for Gaussian smoothing using a range of 15 points.

A bimodal smoothing kernel (figure 2, k3, k3R) results from an algorithm derived for derivative
smoothing.   A bimodal kernel suppresses the contribution of the center point and enhances the
contributions of the adjacent points.   The effect is to enhance distributed relationships between
points and suppress the effect of individual point values.
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Figure 1.  Normal Gausian and linear center
weighted smoothing kernels.  K1=1/e

n
/ Σm
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n
,  K2=(m-|n|)/Σm (m-|n|) shown for m=5

and 4 respectively.  Dividing by the sum of
weights assures that the sum of the factors
will equal 1.

Figure 2. Derivative smoothing kernels.
Equalizing third differences at a point using
two points on either side (figure 3).  K3r
results from using the values produced by  K3
in place of the originals in the sequence as
each successive point is evaluated.   The sum
of values shown for K3 = 1, for K3r = .985

The derivation of the simple bimodal kernel (k3) follows directly from applying a condition
approximating derivative continuity as a principle of connection between five points.  The
algorithm calculates the value needed to equalize the third differences for the first and last groups
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of four points (approaching from either side) in a five point set (figure 3).   This is equivalent to
calculating a point on a curve passing through the adjacent points for which the fourth derivative is
zero, a 3rd degree polynomial.  This is applied recursively to produce the kernel k3R, using each
adjusted point in place of the original value in calculating the next.  This overlapped linking of
five point connectiles produces a distributed continuity and spreads the weights applied to each
point throughout the curve.  It effects the smoothness of a sequence more than its shape, and
produces curves very closely fitting the original data.

For the case of equally spaced points the value of the new point is:

y2 = 
3

2  (y1 + y3) - 
6

1  (y0+y4) (3)

This relation is arrived at by first taking the successive differences with y2 as the unknown:

∆x0=x1-x0=1

∆x1=x2-x1=1

∆x2=x3-x2=1

∆x3=x4-x3=1

∆y0=y1-y0

∆y1=y2-y1

∆y2=y3-y2

∆y3=y4-y3

∆2y0=y2-2y1+y0

∆2y0=y3-2y2+y1

∆2y0=y4-2y3+y2

∆3y0=y3-3y2+3y1-y0 (4a)

∆3y1=y4-3y3+3y2-y1 (4b)

and then setting equation 4a equal to 4b.

y3

Interpolated
point

y2

y4

dy1

dy0

dy2

dy3

II

I

dx0 dx1 dx2 dx3

y1

y2

y0

x0 x1 x2 x3 x4

Figure 3. Interpolating a Point to Approximate Derivative Continuity. To
locate the middle point, lying on a 3rd degree polynomial through four
points, the value y2 is calculated to make the 3rd differences in periods I
and II equal.

Because the algorithm does not make use of the value of the point in question it can both be used
for smoothing and interpolation, inserting a new point in the middle of a four point group.  In
figure 3 the point 'O' is inserted on the path of the implied 3rd degree polynomial through the other
points.   The point 'X' is the point that would result from linear (1st derivative) interpolation. The
scheme for 4th or higher derivative interpolation, or for using non-polynomial connectiles, would
follow the same approach, though these have not been tested. When used for repeated smoothing,
the recursive kernel (k3R) rapidly reduces fluctuation in the higher derivatives with rapidly
declining effect on the path of the curve.
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There are also a few biases and distortions that can develop with this approach, and reasonably
successful corrections made for them in the implementation.  Using recursive smoothing produces
a directional bias which is compensated for by separately scanning the sequence forward and back
and averaging.   The algorithm is undefined near the ends of a sequence for lack of a sufficient
number of points.   In most cases dropping these points would degrade the data more rapidly than
modifying the routine to use fewer points or using extrapolations for the missing points.  The
preferred choice has been to use damped 2nd derivative projections for the missing points and to
reduce the confidence in interpreting shapes near the ends of the resulting curves.

Sometimes the point that would minimize the 3rd derivative at a point introduces a reversal in sign
of a 2nd  derivative within the group of points.  Sometimes this is exactly what continuity implies,
and sometimes it exaggerates coincidental shapes inappropriately.  Simply cushioning this effect
has proved reasonably effective.   Highly irregular point spacing complicates the analysis, and
requires making additional assumptions, for any kind of smoothing routine.  The present routine
makes a correction for moderate irregularity in point spacing and curves with highly irregular
point spacing are given regular point spacing by periodic integration before their shapes are
studied.

A continuous curve is constructed from a finite sequence using k3 and k3R in alternation, first for
interpolation and then smoothing.  The result approximates an infinite degree polynomial.  Given
the qualifications noted, repeated derivative interpolation and smoothing provide a reliable
iterative method of defining a slope at a point for finite sequences.

2.2 Difference scaling exponent, Hσ

Accumulations of random events tend to produce shapes giving false impressions of the processes
producing them.    The need to rule out the presence of random walk to be able to define slopes in
data has been given special attention as in paleontology3,16 concerning one of the data sets to be
used in the demonstration section below.   When the nature of the underlying processes are
unknown, implications of the apparent shapes unclear, and random walk mechanisms conceptually
plausible, there may be no basis for interpreting shape without statistical tests to measure
accumulations of random change.   Such sequences have randomly varying rates of change
(random first differences) so that no rate of change has predictive value for any other, an absence
of meaningful shape..

A random walk, R(n), is a sum of independent copies of a random variable:

∑=
n

XnR )( (5)

where X is a random variable with variance of ν , and the mean end point variance for all such
R(n) increases as ν⋅n .    Consequently the variance of the differences over shorter intervals will
be expected to increase in proportion to the length of the interval.    The set of step differences in
R(n) of interval length k is:
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composed of )1( −− kn  sums of k step differences, with expected mean variance of ν⋅k .

A sequence combining ordinary Gaussian noise with another behavior:
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( ) nXnfnS +=)( (7)

where ( )nf  is unknown, has single step differences of ( ) ( ) )1()( 1−+−−+ nn XnfXnf  and

step differences of interval length k:

( ) ( ) ( ) ( ) ( )( )knnkk XXknfnfXXfkfS −−+−−−+−=∆ ...,)0( 0 (6)

providing )1( −− kn  step differences, with a mean step variance of 2ν + fν , where f  is the

variance for step differences in the unknown.   The step variance of the noise component, 2 , will
be the same for all interval sizes, and the combined variance will depend on the structure and

component approximates a simple straight line trend at the scale of the intervals considered its step

This effect is seen in the slopes of a log/log plot of νν and k, allowing a measure νν' to be defined as
that slope:

( )
( )j

k

Sv

Sv

j

k

∆

∆
=⋅ lnln'ν   ..... (8)

where j and k are the step sizes used to make sequences ∆Sj and ∆Sk of the step differences of
S(n), with νν(∆Sj) and νν(∆Sk) their variances, where the expected range of  2>νν'>0 with  νν'=1 for
random walks of a Gaussian random variable.    Stated in the conventional form for difference
scaling in fractiles,

σ(∆k)=ceHσ (9)

replacing ν ν with its square root σσ and νν' withexponent ΗΗσσ having an expected range 1>ΗΗσσ>0  with
mean of ΗΗσσ  =.5  for pure random walks, as for the Hurst exponent (H∆) used to measure fractile
dimension5,11.

Ε(|∆k|)=ceH∆ (10)

For standard comparison the value of c is to be taken as the value of the measure on the minimum
length interval, so that the initial value of the log/log plot is always one (1) as seen in figures 7, 8,
9 & 11.

3  D e m o n s t r a t i o n s

Brief examples are offered to illustrate these techniques.   The derivative reconstruction and
Gaussian smoothing work was done on a P.C. in AutoCAD by Autodesk using its lisp
programming language and are available as a series of lisp routines for AutoCAD v12-13 from
http://idt.net/~ph/Curve.zip.   Any general analysis platform allowing varying point spacing for
different measures in a single table would be serve as well.   The step variance and fractile
measure work was done in JMPIN by SAS Institute and is available in JMP format from http://
idt.net/~ph/StepVar.zip.
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3.1 Fine Shapes of Gamma Ray Burst BATSE Trigger 551

Figure 4. shows a sequence of 150 rates of gamma ray detection at BATSE satellite detectors1

including a gamma ray burst (Y1).  The raw measure was composed of 191 points with irregular
spacing, based on the length of time between every sixth photon recorded.   This irregularly
spaced sequence was converted to the regularly spaced 150 point sequence shown by periodic
integration over .5 millisecond intervals, calculating the areas under the trace of the original
points.   In figure 5 the curve U1(Y1,k1-11,) is the result of a single pass Gaussian smoothing,
combining each point with five points on either side.  The other curve, U4(Y1, k3,) shows the effect
of four steps of derivative smoothing, first applying k3R  for smoothing, then interpolation with k3

to make a curve with 300 points, and then smoothing twice with k3R, the basic steps of derivative
reconstruction.  The naming convention indicates four repetitions of k3 for convenience in
notation.

0

10

Y1

25 50 75

0

20

30

P/ms

millisec

0

10

U4(Y1, k3)

25 50 75

0

20

30

U1(Y1, k1-11)

P/ms

millisec

Figure 4. Gamma ray burst BATSE 551.
Photons per millisecond, source NASA, Burst
And Transient Source Experiment.  Time of
each photon in microseconds, from detectors
0, 2 & 6, energy levels 3 & 4, raw rate for
each sixth photon leaving191 points.   The 0.5
milliseconds averages leave 150 regularly
spaced points for uniform smoothing.

Figure 5. Center weighted averaging and
derivative smoothing.  For gamma ray burst
data of figure 4, using one pass of Gaussian
smoothing U1(Y1, k1-5) and four passes of
recursive smoothing U4(Y1, k4), for both
smoothing (S) and interpolation (I), in the
sequence S-I-S-S.   Detail box shows area
enlarged in figure 5

The differing shape suppression effect of the two methods is clear, but the real question is whether
the more detailed shapes provided by derivative reconstruction are real features of the data.   This
is demonstrated in figure 6 showing an enlargement of the detail box of figure 5.   The same
curves are shown along with five others made by the same steps of derivative reconstruction based
on six independent subsets of the original data.   The six subsets were made by the same method,
selecting every sixth point, but beginning from different starting points in the original sequence.
The six curves visibly follow each other very closely and show tightly clustered turning points as

                                                       
1 The BATSE Trigger 551 photon arrival data contains a list of 28904 photons.   The data shown is from
detectors 0,2&6 in energy levels 3&4, selected for least noise, showing the third of the three gamma ray
bursts in the particular record, representing 1141 photons.
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indicated by the close groups of vertical lines which mark the minima of all six curves.   Virtually
every little bump turns out to be highly robust to resampling the original data, indicating that
virtually none of the shapes originate from either the smoothing method used or from chance
sampling of the data.   The scientific question of whether these shapes represent any particular
physical process or event is, of course, a separate question and some might represent illusory
shapes of Poisson noise as well as blurred images of far off explosive events.   The comparison
also shows how Gaussian and derivative smoothing are completely consistent with each other,
representing differing degrees of generalization of the same robust underlying shapes, many of
which are not at all clearly evident from visual inspection.

5

U4(Yi, k3), 1-6

10 15 20

0

p/ms

millisec
10

15

20

Groups ofMinima

3 3 6 6666666

25

25

U1(Y1, k1-5)

Figure 6. Detail of figure 5 with overlay of derivative smoothing for 5 other independent
subsets   Each subset was formed from sampling one of six points from the BATSE 551 data
from different starting points, ~75 points each.  The numbers of roughly coincident minima are
shown below the axis. The derivative smoothing shown in figure 5 is the dashed line.

3.2 Comparing Measures of Scaling

There has been considerable interest in random walk patterns in relation to 'Hurst's Law', relating
power law scaling of variation to long range dependence within natural sequences, further
developed by Mandelbrot to characterize fractile patterns10.  Equation 10 is the basic measure
presently used to determine fractile dimension 5,11.   The rather close relationship of fractile scaling
measures to the step variance test for symmetric noise, equation 9, was found during final
literature search.  The established measures of scaling behavior correlate the means of change over
intervals of different sizes, and the new measure correlates their standard deviations.   More
significant differences lie in the way the tests are intended to be used.   Figure 7a and 7b show
Hurst's original correlation, HR/S, and Mandelbrot's, H∆∆ for the same 20 arbitrarily chosen random
walks of 96 points.   Figure 8a shows Hσσ applied to the same random walks, and 8b their traces

along with the n2± expected range for all random walks.

The rationale for examining the variance (or standard deviation) of stepes in a sequence at
different scale intervals was to see if the internal variation in successively larger periods would
cancel out.   That would indicate the presence of noise.   If the variance of change is relatively
constant for different size intervals it indicates that adding successive points cancels out the
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variation of preceding points, indicating symmetric variation about some norm.    This is
preliminary evidence of underlying continuity, having a norm, and justifies noise reduction and an
examination of the underlying shape for recognizable behavior.
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Figure 7. Fractal scaling exponent H by traditional methods  a) Hurst R/S indicator, Hr/s:
E(Y∆max -Y∆min)/Ε(σ(Y'∆))=c1 t∆

 H ,  b) Mandelbrot absolute first differences measure,
H∆ :  E(|∆τ|)=c2* t∆

 Η, for twenty 96 point random walks; H for random walks, H1 for their
derivatives, and H-1 their integrals, using ratio of longest to shortest period, and giving standard
deviations.
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8a) H1=0.0047, H=0.45, H-1=0.90
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8b) 20 random walks used for 4a, 4b, & 5a

Figure 8. Scaling exponent H for variance symmetry test.  a) Standard deviation of first
differences, Hσ: E(σ(∆τ))=c2* t∆

 Η for 2,4,8 &16 point periods in 20 random walks of 96 points;
b) Plots of the 20 random walks used

Figures 7 & 8a also show the performance of each measure for the derivatives and integrals of
each of the 20 random walks as well as each of the random walks themselves.   The differing
behavior of derivatives and integrals can expose more of the structure of a sequence being studied.
A number of experiments to distinguish the ratios of noise, random walk and continuous shapes
were done with some small success, but it is a difficult subject and a general discussion is beyond
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the present scope6.   The high values of H for the integrals of random walks demonstrates the
positive correlation of steps in their integrals, the same as the high values of H expected for
continuous curves10.

The typical pattern of effects due to added noise in a sequence is demonstrated in figure 9a and 9b.
The standard used is slightly complex, but offers a nice demonstration of the strong and directly
proportionate effect of noise in reducing the apparent scaling behavior of other components of the
sequence.   A random walk is used as the basis for creating a smooth shape using a 100λ spline.
Then various degrees of noise, as fractions or multiples of the step variance that generated the
original random walk, are added and the values of σ(∆)σ(∆) and the slope H calculated for each (figure
9b).   The slopes, and corresponding scaling exponent of the data are reduced in direct proportion
to the degree of noise in the data, reducing the slope to near or below zero when noise dominates.
The unfortunate consequence is that mixed signals composed of combinations of continuous and
random walk curves and moderate noise may have any scaling exponent.    Even simple
quadratics, with just a little added noise, may display constant power law scaling of variation
simulating random walks6.

Sometimes it is possible to tease these components apart by comparing the scaling exponents of
derivatives and integrals.   Continuous shapes tend to have high scaling exponents (H=.89 for the
spline curve in figure 9a) and tend to be unchanged by integration or differentiation, while the
integrals or derivatives of random walks and noise are strongly effected, and tend to fall in
different ranges6.   Generally, though the problem is under-constrained and requires additional
information or assumptions to solve.

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100

+(2n)1/2

n

-(2n)1/2

σ∆

 Spline
+.25σ

+.5σ
+1σ
+2σ
+4σ

 R-W

9a) Spline of R-W +.125σ,.25σ,.5σ, 1σ, 2σ,
4σ

+0σ +.125σ +.25σ +.5σ

+1σ

+2σ

+4σ

H=.04

H=.89 H=.56

-0.5

0.0

0.5

1.0

1.5

2.0

1 2 4 8 16

Points

Log2 σ(∆)

H=.15

H=.34

H=.83 H=.73

9b) H= 0.89, 0.83, 0.73, 0.56, 0.34, 0.15, 0.04

Figure 9. Effect of Noise on Scaling Exponent H.  a) a random walk as in fig. 8b., with a smooth
100λ spline, to which various amounts of noise are added, in factors of σ for the steps of the
given random walk. b) plots of σ(∆) for each curve of 9a. showing regular decline of slope for
increasing noise.

Comparing the performance for derivatives and integrals also displays differences between the
behaviors of the measures themselves.   Hurst's original formulation (fig. 7a) has complex scaling
effects within the measure itself, using the range of movement (R) within each time period (t∆∆))
rather than change over the whole period (∆∆ττ), and dividing by the standard deviation of step
differences within each period without accounting for the changing standard error of that measure
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for each interval period.   It is clear from the figure that the measure does not clearly distinguish
the behavior of the integrals, and has such narrow variation that it appears insensitive to changes
in data structure in general.   The values of Hr/s also regularly exceed those of H∆∆, failing to have a
mean of .5 as expected, a discrepancy also noted by Hastings and Sugihara5 (p 151).  The behavior
of the standard measure, H∆∆=E(|∆∆ττ|), appears all but identical for random walks to Hσσ=σ ∆σ ∆ττ  seen
in figures 7b and  8a.   The two measures, however, provide significantly different results for other
kinds of sequences (see figure 11).   There are also a number of other methods for calculating
values for the scaling exponent with a likelihood of differing behavior.   While an effort has been
made to be balanced and complete in relating the new measure to the preceding ones, a full
discussion is beyond the present scope.

3.3 Evolutionary rates of G. tumida

G. tumida is a common photosynthesizing plankton, which apparently tripled in size in a rapid
transient process around 5.5 million years ago, as studied in some detail by B. Malmgren9.  The
data shows 95 samples representing about 50 specimens each, spanning the past 6.5 million years,
collected from an Indian ocean sediment core (figure 10).   This data has been discussed as a
possible random walk3,16 because random walk can not be automatically ruled out for the
progression of genetic variation.   Unable to prove otherwise, it is considered possible that genetic
structures could vary as freely as location of molecules in Brownian motion, even the common
genetic structures of vast populations.

The relative step variances shown in figure 11, for 1, 2, 4, 8 and 16 point step intervals, however,
indicate that non-accumulative variance dominates.  The value of ΗΗσσ is .17, almost four standard
deviations (see fig 8a) below the mean of pure random walks. This indicates that the structure of
the variance is primarily symmetric and justifies appropriate noise reduction to see if recognizable
behavioral shapes can be identified.  The value of ΗΗσσ

−1−1 is .89, showing an increase from ΗΗσσ that is
far greater than would be expected if the sequence were purely composed of noise, suggesting that
the noise at the integral level is less successful in masking the presence of an underlying process
with strong serial correlation.

The values of ΗΗ∆∆,  using the E(|∆|)(|∆|) method, arealso shown in figure 11 for record and comparison.
The significant differences appear to be that unlike the value for ΗΗσσ, the value of ΗΗ∆∆ for the
integral of the data, ΗΗ∆∆

−1−1, is at the limit of the expected range, 1.01, and unlike the value for ΗΗσσ,
.17, ~3.7 std deviations from the mean, the value of ΗΗ∆∆ is near the margin of clear distinction, .28,
~2.4 std. deviations, from the mean of measures consistent with random walk.

As a technical note, one might question the comparison of step variances for curves with irregular
point spacing.   In this data set samples were collected at twice the density during the period of
greatest interest, the time of rapid transition.   Whether it is valid to use point spacing rather than
time spacing for determining an average value of Hσσ depends on whether the result is
approximately a straight line since the ratios of variances would then all change in the same
proportion between scales.
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Figure 10. Mean Profile Area of G. tumida
fossils from B. Malmgren (1983) DSDP site
214.  The change in size of a common
plankton over six million years recorded in 95
samples of about 50 specimens each.

Figure 11. Variation scaling for G. tumida
size, derivative and integral, and for 20
random walks. Comparing E(|∆|) and σ(∆)
ratios for n=2,4,8, & 16 points.   The low
values of Hσ, and H∆

 indicate a presence of
white noise in the data and high values of Hσ

-

1, and H∆
-1 (for integrals) indicate the noise is

masking some accumulative shape.

3.4 Shape Scale Display

Having determined a predominance of symmetric noise, the G. tumida data may then be
tentatively treated as representing a continuous curve with superimposed random noise.  Figures
12 & 13 show initial noise reduction and iterated Gaussian smoothing to demonstrate the
application of scale space methods to time series.   The curves for figure 12 were formed by first
applying k1, using a 17 data point spread to suppress random noise and represent the basic shape.
The point spacing of  the data was then regularized at .05 Myr and further shape smoothing was
done with a constant 5 point (.2 Myr) Gaussian kernel.

One might question using a number of points to define the range for the initial smoothing and a
fixed period for the later smoothing iterations.   The initial smoothing is for the purpose of noise
suppression. Once that has been done the reason for further smoothing is not noise suppression,
but shape suppression, using algorithms designed for uniform point spacing.   The concern is that
the spacing of the data points varies widely, as more samples were taken in the period of greatest
interest.   The initial noise suppression based on a fixed point spread does result in non-uniform
suppression of the underlying shapes that may be present.  The shapes in the periods of widely
spaced points (6.5 to 5.5 ma and 5 to 2 ma) are more suppressed than those in the period of most
frequent points (5.5 to 5 ma).   The alternate choice would have been to regularize point spacing
first, resulting in exaggerated shape suppression in the period of most interest.   Inspection of the
results of both approaches6 indicates that regularizing the point spacing first results in a significant
misstatement of the duration of the transition event.



PHILIP F. HENSHAW 13 CONTINUITY & SHAPE

IJPRAI 11/99 13 10/10/1999

0.0

0.1

0.2

Ma6 5 4 3 2

mm2

U1

U4

U32

%/Myr

100

  0

dy/y of U4

200

1

512

6 5 4 3 2U
n
 scale

256

128

64

32

16

8

4

2

Ma

III

II

IV

I

1024

?
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Figure 13. Shape scale diagram.  The location
of inflection points by iteration of 0.2 Myr
Gaussian smoothing.  General shape scale
levels I, II, III, IV representing four general
scales of inflection point persistence.

Whether the smoothing was actually valid depends on whether the underlying shape and it's
characteristics are recognizable.   This might be accomplished by matching a patterned sequence
of inflection points to those in other environmental measures, demonstrating a system of corollary
factors.   Here, one may recognize in the derivative of U4 in figure 12, the classic form of a
triggered change of state, a clear individual event of acceleration and deceleration connecting
periods with distinctly different ranges of fluctuation.   The same suggestion can be gleaned from
the shape scale diagram (figure 13), though this may be less clear due to the unfamiliarity of the
this type of data representation.

Figure 13 shows the movement and suppression of the inflection points of the curve with iterative
Gaussian smoothing.   The diagram demonstrates the endurance of each inflection point and the
order in which they vanish from the shape.   The curves shown were drawn by plotting the
location of each inflection point at each smoothing level and then manually fitting a b-spline to
pass through those points.  More sophisticated methods are available7,12 but this rudimentary
approach is equivalent for the present purpose.   The apparent shape scale boundaries at
approximately U1.5, U4.5, U64, and U1024 identify groups of successively more robust inflection
points.

The first two shape scales might represent real shapes in the underlying process, or residual effects
of noise.   It would be surprising if there were no residual effects of noise from a highly irregular
data set such as this.  That three pairs of inflection point traces in shape scale II drop out at about
the same time suggests that they represent a true scale of secondary fluctuation in the behavior.
The last inflection point to the right, starting from about 2.3 ma at U1 is of questionable
significance, being retained through 256 levels of smoothing perhaps only because the last point in
the sequence was atypical.    The smoothing kernel used retains the points near the ends by
reducing the point range of the kernel from the normal 5 to 3 to 0, so that the end points are fixed.
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As a result fluctuations near the ends are suppressed much more slowly and their retention at
higher levels of smoothing less significant.

The third shape scale represents the most robust shapes in the data.    The middle pair of inflection
points traces back to a dip in the curve shortly after the most rapid rise, seeming to indicate that
this feature is not statistical, but behavioral.   Referring back to the derivative curve in figure 12,
the shape scale evidence indicates that fluctuations following the singular peak in the curve at least
initially reflect behavioral oscillation.   At the fourth shape scale only one inflection point remains
corresponding to the  turning point of the apparent 'S' curve transition between relative steady
states.   This is the shape which makes the data interesting, positioned consistently at about 5.4 ma
coinciding with the peak of the first derivative spike in U4.

4  D i s c u s s i o n

The selected techniques reported on here serve to identify and interpret the invariant local
structure of derivative continuity in smooth shapes.   Derivative interpolation and smoothing
(§2.1) is oriented to low level feature detection, regularizing the higher derivative rates of change
in a sequence with minimal effect on gross shape.   Gaussian shape scale analysis is oriented to
hierarchical and higher level feature detection, systematically suppressing all shape in order to
reveal multiple inherent scales of shape and features of shape transcending all shape scales.   One
of the more troublesome aspects of natural system information is the difficulty of reading
behavioral states having multiple scales of irregular fluctuation.    Shape scale analysis seems well
suited for displaying that common characteristic of  natural systems in a manner that is both
directly intuitive and provides useful identifying traits for analysis.

As presented here, neither derivative reconstruction nor shape scale analysis is oriented to locating
discontinuities, but to distinguishing recognizable features within smooth shape.   In other hands
the analysis of Gaussian shape scale has been successfully used to improve the robustness of high
level corner detection in visual images12,13 and of minutiae detection in the analysis of
fingerprints1.    To resolve low level discontinuities, say discontinuities in second derivatives as
would occur at the connection between flat surfaces and connecting curves, derivative
reconstruction might be augmented with a means of adaptively enhancing discontinuities.    Some
efforts of this kind have been noted such as the use of shock filter image processing kernels4,14,
though whether this particular method would serve the purpose indicated has not yet been
determined.

Derivative reconstruction and shape scale analysis rely on one of the highly useful features of
nature, that distributed physical and behavioral connections can be read from the differential
structures of smooth shape.   Both images and time traces, however, typically include mixed
signals of various kinds, overlapping and intermittent subjects,the complex , fragmentary and
indirect effects of many things.    The difference scaling exponent Hσσ (§2.2) was developed to help
distinguish between data sets in which noise reduction is a valid means of generalizing shape, and
those for which it is not.   Only a small sample of the extensive literature on the standard scaling
exponent H∆∆ and its other variations were examined, but no indication of a developed approach to
interpreting mixed signals5,11 was found.

Both indicators, however, and Hurst's original R/S form as well, do seem to cut through
conflicting appearances to expose the same particular hidden group of natural data patterns.
These include the finding by Hurst and Mandelbrot that there tends to be an essentially infinite
span of statistical interdependence in natural system records10.   It is somewhat speculative, but
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this could reflect the presence of systems which have both short and long term derivative
continuity, displaying multiple scales of relevant shape.
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