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A b s t r a c t
Derivative continuity is a distributed invariant relationship between parts of flowing shapes.  The
original techniques presented here were developed for making the behavioral dynamics of

complex processes more recognizable, but are equally applicable to assisting in the recognition of

shapes in images.   Regularizing a sequence using a constraint of derivative continuity is

equivalent to using a bimodal smoothing kernel, producing a distinct bias for reducing variation on

higher derivative levels, sharply defining shape with minimal suppression of shape. To help

determine where reconstructing shapes this way is valid a test was developed to help distinguish

combinations of noise and smooth shapes from random walks. This helps distinguish between

illusory and genuine data shapes, but also exposes a flaw in using this and other measures of
scaling behavior for diagnostic purposes.  Gaussian scale space techniques in use for some time

for identifying reliable landmarks in the shapes of outlines, are demonstrated for use in identifying

key features of shape in time series.

Key Words: PATTERN RECOGNITION, DERIVATIVE CONTINUITY, REGULARIZATION,

RECONSTRUCTION, SMOOTHING KERNELS, CONNECTILES, FRACTAL EXPONENT, SCALE SPACE .

1  I n t r o d u c t i o n

In a literal sense, equations that represent physical behaviors are simplifications of the shapes of
the data gathered about those behaviors, converted to a more useful form.   That form may be

more useful because of its compactness and ease of manipulation, but also frequently for seeming

to embody the very structure of the behavior whose shape it imitates.  The methods reported here

concern one of the invariant relationships between near bye points in equations with smooth shape

at the core of the special relationship between equations and nature,  derivative continuity.  The

property is used here, , to regulate non-parametric representations of shapes with the object of

better representing underlying behavior and its differential structures.  That may be preferred over
the use of equations for the purpose in preliminary investigations, when the subjects of study are

uniquely individual or transient, or for identifying natural markers of shape or behavioral structure

for object or process recognition.

Part of the underlying effort was to define continuous derivatives for sequences, using the
mathematical definition of the derivative and parsimony to construct smooth curves passing

through given points by iteration.   For mathematical functions, having a slope at a point, a

derivative, is determined by whether the slopes, between a given point and points on the curve

approaching it from opposite directions, come to the same value. This definition and test for a

derivative has been well worked out for mathematical functions for a long time, originally

developed by Newton and Leibnetz in the invention of calculus4.  Stated simply, curves which

have a slope at every point change by continuous progressions in direction rather than

discontinuous steps in magnitude, and represent distributed structures of connection.

Derivative continuity, interestingly, is not defined for the smooth flow of physical processes,
except in equations representing them, nor for smooth shapes in data.   For physical shapes and

processes the connectedness of smooth flows is a presumption,  one that has proved to be
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singularly useful in allowing the representation of physical behavior with equations. There are, of

course, disjointed, random, fractile and chaotic patterns that seem common as well. In fact all

things and processes are so full of gaps as to seem perfectly discontinuous in ultimate

construction.   Still the great success of presuming continuity, provides direct support for

considering it as an invariant physical principle of meaningful shape, even if not well understood.
Except for behaviors related to the physics of the conservation laws, the physical basis for

derivative continuity in nature is relatively unstudied..   It is this study of the physical basis of

continuity that  has motivated much of this work.  Progress on that wider interest is fairly limited

but it has produced some techniques that should be  independently useful.

1.1 Related Issues and Methods

The object of generalizing data shapes is to create features that distinguish the various subjects
represented in scattered points of data.  This requires applying constraints to what would otherwise

be 'ill-posed' problems, applying various assumptions regarding the non-accidental character of

nature as discussed by Wechsler17 in relation to the problems of computer vision and artificial

intelligence.   Derivative continuity is typically part of the constraint applied in the use of

Lagrange multipliers
17

, for example, as well as in fitting 'least energy' surfaces such as with the

level set approach18 , because the constraints applied are continuous functions.   Continuity can

also be applied using constraints on local connections between points that are weaker than

optimized equations, with the benefit of preserving subtle and transient characteristics of shape

that would otherwise be lost.

To determine whether it is appropriate to assume underlying continuity and the validity of
apparent statistical trends or shapes, variation scaling and range tests3,5,11 have been used.  These

same tests underlie the measures of fractile dimension for natural scaling patterns and have been

used to identify a wide range of apparent fractile patterns in nature.   One of the invariants of

natural data, however, is a presence of mixed signals, originating from mixed sources.    That all

variation scaling and range tests are compromised by sensitivity to mixed signals has been noted
16

but is not widely investigated.   Because some the measures display differing sensitivity to

different data structures, however, better ways to separately identify components of mixed types of

data may be developed.

Once meaningful data shapes are found it is common to use non-linear operators to isolate
identifiable landmarks8.    The Gaussian scale space methods7,12,13,15 , in simple terms, use

inflection points on a curve that are relatively invariant to smoothing as identifying marks of
shape.   In concept, though not yet in practice, the location and kind of derivative inflection points

on a smooth shape can be read like a bar-code, uniquely identifying given subjects.  Given

sufficiently accurate representation of shapes, various other details of the general differential

structure can also be tested for robustness and used as identifying marks.   While most work done

in the area concerns the outline shapes of objects in visual images the method is also directly

adaptable to identifying scales and landmarks of differential structure in time series.

2  M e a n s  a n d  M e t h o d s

2.1 Derivative interpolation and smoothing

A smoothing 'kernel' is a distribution of factors with a sum of one, such as:
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Here a is the number of points on either side of each point i in sequence Y of length j.   The kernel
k will be undefined for values of i near 0 and j unless altered in those regions. Repeated

smoothing of sequence Y by kernel k is indicated U
m

().

Gaussian shaped kernels (figure 1, k1) are considered to be ideal for scale space techniques 
7, 14

particularly for their broad invariance to transformation15.  The kernel k2 shows linear center

weighting for comparison.  These definitions may be applied to any size kernel,  indicated k1,15 for

example, for Gaussian smoothing using a range of 15 points.

A bimodal smoothing kernel (figure 2, k3, k3R) results from an algorithm derived for derivative
smoothing.   A bimodal kernel suppresses the contribution of the center point and enhances the

contributions of the adjacent points.   The effect is to enhance distributed relationships between

points and suppress the effect of individual point values.
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Figure 1.  Normal Gausian and linear center

weighted smoothing kernels.  K1=1/e
n
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,  K2=(m-|n|)/ m (m-|n|) shown for m=5

and 4 respectively.  Dividing by the sum of

weights assures that the sum of the factors

will equal 1.

Figure 2. Derivative smoothing kernels.

Equalizing third differences at a point using

two points on either side (figure 3).  K3r
results from using the values produced by  K3
in place of the originals in the sequence as

each successive point is evaluated.   The sum

of values shown for K3 = 1, for K3r = .985

The derivation of the simple bimodal kernel (k3) follows directly from applying a condition
approximating derivative continuity as a principle of connection between five points.  The

algorithm calculates the value needed to equalize the third differences for the first and last groups
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of four points (approaching from either side) in a five point set (figure 3).   This is equivalent to

calculating a point on a curve passing through the adjacent points for which the fourth derivative is

zero, a 3rd degree polynomial.  This is applied recursively to produce the kernel k3R, using each

adjusted point in place of the original value in calculating the next.  This overlapped linking of

five point connectiles produces a distributed continuity and spreads the weights applied to each
point throughout the curve.  It effects the smoothness of a sequence more than its shape, and

produces curves very closely fitting the original data.

For the case of equally spaced points the value of the new point is:

y2 = 
3

2  (y1 + y3) - 
6

1  (y0+y4) (3)

This relation is arrived at by first taking the successive differences with y2 as the unknown:

x0=x1-x0=1

x1=x2-x1=1

x2=x3-x2=1

x3=x4-x3=1

y0=y1-y0

y1=y2-y1

y2=y3-y2

y3=y4-y3

2
y0=y2-2y1+y0

2y0=y3-2y2+y1

2y0=y4-2y3+y2

3y0=y3-3y2+3y1-y0 (4a)

3y1=y4-3y3+3y2-y1 (4b)

and then setting equation 4a equal to 4b.
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Figure 3. Interpolating a Point to Approximate Derivative Continuity. To

locate the middle point, lying on a 3rd degree polynomial through four

points, the value y2 is calculated to make the 3rd differences in periods I

and II equal.

Because the algorithm does not make use of the value of the point in question it can both be used
for smoothing and interpolation, inserting a new point in the middle of a four point group.  In

figure 3 the point 'O' is inserted on the path of the implied 3rd degree polynomial through the other
points.   The point 'X' is the point that would result from linear (1st derivative) interpolation. The

scheme for 4th or higher derivative interpolation, or for using non-polynomial connectiles, would

follow the same approach, though these have not been tested. When used for repeated smoothing,

the recursive kernel (k3R) rapidly reduces fluctuation in the higher derivatives with rapidly

declining effect on the path of the curve.
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There are also a few biases and distortions that can develop with this approach, and reasonably
successful corrections made for them in the implementation.  Using recursive smoothing produces

a directional bias which is compensated for by separately scanning the sequence forward and back

and averaging.   The algorithm is undefined near the ends of a sequence for lack of a sufficient

number of points.   In most cases dropping these points would degrade the data more rapidly than
modifying the routine to use fewer points or using extrapolations for the missing points.  The

preferred choice has been to use damped 2nd derivative projections for the missing points and to

reduce the confidence in interpreting shapes near the ends of the resulting curves.

Sometimes the point that would minimize the 3rd derivative at a point introduces a reversal in sign
of a 2

nd
  derivative within the group of points.  Sometimes this is exactly what continuity implies,

and sometimes it exaggerates coincidental shapes inappropriately.  Simply cushioning this effect

has proved reasonably effective.   Highly irregular point spacing complicates the analysis, and

requires making additional assumptions, for any kind of smoothing routine.  The present routine

makes a correction for moderate irregularity in point spacing and curves with highly irregular

point spacing are given regular point spacing by periodic integration before their shapes are

studied.

A continuous curve is constructed from a finite sequence using k3 and k3R in alternation, first for
interpolation and then smoothing.  The result approximates an infinite degree polynomial.  Given

the qualifications noted, repeated derivative interpolation and smoothing provide a reliable

iterative method of defining a slope at a point for finite sequences.

2.2 Difference scaling exponent, H

Accumulations of random events tend to produce shapes giving false impressions of the processes
producing them.    The need to rule out the presence of random walk to be able to define slopes in

data has been given special attention as in paleontology
3,16

 concerning one of the data sets to be

used in the demonstration section below.   When the nature of the underlying processes are

unknown, implications of the apparent shapes unclear, and random walk mechanisms conceptually

plausible, there may be no basis for interpreting shape without statistical tests to measure

accumulations of random change.   Such sequences have randomly varying rates of change

(random first differences) so that no rate of change has predictive value for any other, an absence

of meaningful shape..

A random walk, R(n), is a sum of independent copies of a random variable:

n

XnR )( (5)

where X is a random variable with variance of ν , and the mean end point variance for all such

R(n) increases as νn .    Consequently the variance of the differences over shorter intervals will

be expected to increase in proportion to the length of the interval.    The set of step differences in

R(n) of interval length k is:

n
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composed of )1(kn  sums of k step differences, with expected mean variance of νk .

A sequence combining ordinary Gaussian noise with another behavior:
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nXnfnS )( (7)

where nf  is unknown, has single step differences of )1()( 1nn XnfXnf  and

step differences of interval length k:

knnkk
XXknfnfXXfkfS ...,)0(

0
(6)

providing )1(kn  step differences, with a mean step variance of 2ν + fν , where f  is the

variance for step differences in the unknown.   The step variance of the noise component, 2 , will

be the same for all interval sizes, and the combined variance will depend on the structure and

component approximates a simple straight line trend at the scale of the intervals considered its step

This effect is seen in the slopes of a log/log plot of  and k, allowing a measure ' to be defined as

that slope:

j

k

Sv

Sv

j

k
lnln'ν   ..... (8)

where j and k are the step sizes used to make sequences Sj and Sk of the step differences of

S(n), with ( Sj) and ( Sk) their variances, where the expected range of  2> '>0 with  '=1 for
random walks of a Gaussian random variable.    Stated in the conventional form for difference

scaling in fractiles,

( k)=ceH (9)

replacing with its square root  and ' withexponent  having an expected range 1> >0  with

mean of =.5  for pure random walks, as for the Hurst exponent (H ) used to measure fractile
dimension5,11.

k|)=ce
H

(10)

For standard comparison the value of c is to be taken as the value of the measure on the minimum
length interval, so that the initial value of the log/log plot is always one (1) as seen in figures 7, 8,

9 & 11.

3  D e m o n s t r a t i o n s

Brief examples are offered to illustrate these techniques.   The derivative reconstruction and
Gaussian smoothing work was done on a P.C. in AutoCAD by Autodesk using its lisp

programming language and are available as a series of lisp routines for AutoCAD v12-13 from

http://idt.net/~ph/Curve.zip.   Any general analysis platform allowing varying point spacing for

different measures in a single table would be serve as well.   The step variance and fractile
measure work was done in JMPIN by SAS Institute and is available in JMP format from http://

idt.net/~ph/StepVar.zip.
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3.1 Fine Shapes of Gamma Ray Burst BATSE Trigger 551

Figure 4. shows a sequence of 150 rates of gamma ray detection at BATSE satellite detectors1

including a gamma ray burst (Y1).  The raw measure was composed of 191 points with irregular

spacing, based on the length of time between every sixth photon recorded.   This irregularly
spaced sequence was converted to the regularly spaced 150 point sequence shown by periodic

integration over .5 millisecond intervals, calculating the areas under the trace of the original

points.   In figure 5 the curve U
1
(Y1,k1-11,) is the result of a single pass Gaussian smoothing,

combining each point with five points on either side.  The other curve, U4
(Y1, k3,) shows the effect

of four steps of derivative smoothing, first applying k3R  for smoothing, then interpolation with k3

to make a curve with 300 points, and then smoothing twice with k3R, the basic steps of derivative

reconstruction.  The naming convention indicates four repetitions of k3 for convenience in

notation.
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Figure 4. Gamma ray burst BATSE 551.

Photons per millisecond, source NASA, Burst
And Transient Source Experiment.  Time of

each photon in microseconds, from detectors

0, 2 & 6, energy levels 3 & 4, raw rate for

each sixth photon leaving191 points.   The 0.5

milliseconds averages leave 150 regularly
spaced points for uniform smoothing.

Figure 5. Center weighted averaging and

derivative smoothing.  For gamma ray burst
data of figure 4, using one pass of Gaussian

smoothing U1(Y1, k1-5) and four passes of

recursive smoothing U
4
(Y1, k4), for both

smoothing (S) and interpolation (I), in the

sequence S-I-S-S.   Detail box shows area
enlarged in figure 5

The differing shape suppression effect of the two methods is clear, but the real question is whether
the more detailed shapes provided by derivative reconstruction are real features of the data.   This

is demonstrated in figure 6 showing an enlargement of the detail box of figure 5.   The same

curves are shown along with five others made by the same steps of derivative reconstruction based
on six independent subsets of the original data.   The six subsets were made by the same method,

selecting every sixth point, but beginning from different starting points in the original sequence.

The six curves visibly follow each other very closely and show tightly clustered turning points as

                                                       
1 The BATSE Trigger 551 photon arrival data contains a list of 28904 photons.   The data shown is from
detectors 0,2&6 in energy levels 3&4, selected for least noise, showing the third of the three gamma ray
bursts in the particular record, representing 1141 photons.
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indicated by the close groups of vertical lines which mark the minima of all six curves.   Virtually

every little bump turns out to be highly robust to resampling the original data, indicating that

virtually none of the shapes originate from either the smoothing method used or from chance

sampling of the data.   The scientific question of whether these shapes represent any particular

physical process or event is, of course, a separate question and some might represent illusory
shapes of Poisson noise as well as blurred images of far off explosive events.   The comparison

also shows how Gaussian and derivative smoothing are completely consistent with each other,

representing differing degrees of generalization of the same robust underlying shapes, many of

which are not at all clearly evident from visual inspection.
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Figure 6. Detail of figure 5 with overlay of derivative smoothing for 5 other independent

subsets   Each subset was formed from sampling one of six points from the BATSE 551 data

from different starting points, ~75 points each.  The numbers of roughly coincident minima are
shown below the axis. The derivative smoothing shown in figure 5 is the dashed line.

3.2 Comparing Measures of Scaling

There has been considerable interest in random walk patterns in relation to 'Hurst's Law', relating
power law scaling of variation to long range dependence within natural sequences, further

developed by Mandelbrot to characterize fractile patterns10.  Equation 10 is the basic measure

presently used to determine fractile dimension 5,11.   The rather close relationship of fractile scaling

measures to the step variance test for symmetric noise, equation 9, was found during final

literature search.  The established measures of scaling behavior correlate the means of change over
intervals of different sizes, and the new measure correlates their standard deviations.   More

significant differences lie in the way the tests are intended to be used.   Figure 7a and 7b show

Hurst's original correlation, HR/S, and Mandelbrot's, H  for the same 20 arbitrarily chosen random

walks of 96 points.   Figure 8a shows H  applied to the same random walks, and 8b their traces

along with the n2 expected range for all random walks.

The rationale for examining the variance (or standard deviation) of stepes in a sequence at
different scale intervals was to see if the internal variation in successively larger periods would

cancel out.   That would indicate the presence of noise.   If the variance of change is relatively

constant for different size intervals it indicates that adding successive points cancels out the
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variation of preceding points, indicating symmetric variation about some norm.    This is

preliminary evidence of underlying continuity, having a norm, and justifies noise reduction and an

examination of the underlying shape for recognizable behavior.
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Figure 7. Fractal scaling exponent H by traditional methods  a) Hurst R/S indicator, Hr/s:

E(Y max -Y min Y' )) c1 t
H ,  b) Mandelbrot absolute first differences measure,

H E(| | c2* t , for twenty 96 point random walks; H for random walks, H1 for their

derivatives, and H-1 their integrals, using ratio of longest to shortest period, and giving standard
deviations.
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Figure 8. Scaling exponent H for variance symmetry test.  a) Standard deviation of first

differences, H : E( c2* t  for 2,4,8 &16 point periods in 20 random walks of 96 points;

b) Plots of the 20 random walks used

Figures 7 & 8a also show the performance of each measure for the derivatives and integrals of
each of the 20 random walks as well as each of the random walks themselves.   The differing

behavior of derivatives and integrals can expose more of the structure of a sequence being studied.

A number of experiments to distinguish the ratios of noise, random walk and continuous shapes

were done with some small success, but it is a difficult subject and a general discussion is beyond
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the present scope6.   The high values of H for the integrals of random walks demonstrates the

positive correlation of steps in their integrals, the same as the high values of H expected for

continuous curves10.

The typical pattern of effects due to added noise in a sequence is demonstrated in figure 9a and 9b.
The standard used is slightly complex, but offers a nice demonstration of the strong and directly
proportionate effect of noise in reducing the apparent scaling behavior of other components of the

sequence.   A random walk is used as the basis for creating a smooth shape using a 100  spline.
Then various degrees of noise, as fractions or multiples of the step variance that generated the

original random walk, are added and the values of  and the slope H calculated for each (figure
9b).   The slopes, and corresponding scaling exponent of the data are reduced in direct proportion

to the degree of noise in the data, reducing the slope to near or below zero when noise dominates.

The unfortunate consequence is that mixed signals composed of combinations of continuous and

random walk curves and moderate noise may have any scaling exponent.    Even simple

quadratics, with just a little added noise, may display constant power law scaling of variation

simulating random walks
6
.

Sometimes it is possible to tease these components apart by comparing the scaling exponents of
derivatives and integrals.   Continuous shapes tend to have high scaling exponents (H=.89 for the

spline curve in figure 9a) and tend to be unchanged by integration or differentiation, while the

integrals or derivatives of random walks and noise are strongly effected, and tend to fall in

different ranges6.   Generally, though the problem is under-constrained and requires additional

information or assumptions to solve.
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Figure 9. Effect of Noise on Scaling Exponent H.  a) a random walk as in fig. 8b., with a smooth

100  spline, to which various amounts of noise are added, in factors of  for the steps of the

given random walk. b) plots of ( ) for each curve of 9a. showing regular decline of slope for
increasing noise.

Comparing the performance for derivatives and integrals also displays differences between the
behaviors of the measures themselves.   Hurst's original formulation (fig. 7a) has complex scaling

effects within the measure itself, using the range of movement (R) within each time period (t

rather than change over the whole period ( ), and dividing by the standard deviation of step
differences within each period without accounting for the changing standard error of that measure
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for each interval period.   It is clear from the figure that the measure does not clearly distinguish

the behavior of the integrals, and has such narrow variation that it appears insensitive to changes

in data structure in general.   The values of Hr/s also regularly exceed those of H , failing to have a
mean of .5 as expected, a discrepancy also noted by Hastings and Sugihara5 (p 151).  The behavior

of the standard measure, H =E(| |), appears all but identical for random walks to H =  seen

in figures 7b and  8a The two measures, however, provide significantly different results for other
kinds of sequences (see figure 11).   There are also a number of other methods for calculating

values for the scaling exponent with a likelihood of differing behavior.   While an effort has been

made to be balanced and complete in relating the new measure to the preceding ones, a full

discussion is beyond the present scope.

3.3 Evolutionary rates of G. tumida

G. tumida is a common photosynthesizing plankton, which apparently tripled in size in a rapid
transient process around 5.5 million years ago, as studied in some detail by B. Malmgren

9
.  The

data shows 95 samples representing about 50 specimens each, spanning the past 6.5 million years,
collected from an Indian ocean sediment core (figure 10).   This data has been discussed as a

possible random walk3,16 because random walk can not be automatically ruled out for the

progression of genetic variation.   Unable to prove otherwise, it is considered possible that genetic

structures could vary as freely as location of molecules in Brownian motion, even the common

genetic structures of vast populations.

The relative step variances shown in figure 11, for 1, 2, 4, 8 and 16 point step intervals, however,

indicate that non-accumulative variance dominates.  The value of  is .17, almost four standard
deviations (see fig 8a) below the mean of pure random walks. This indicates that the structure of

the variance is primarily symmetric and justifies appropriate noise reduction to see if recognizable

behavioral shapes can be identified.  The value of  is .89, showing an increase from  that is
far greater than would be expected if the sequence were purely composed of noise, suggesting that

the noise at the integral level is less successful in masking the presence of an underlying process

with strong serial correlation.

The values of , using the E  method, arealso shown in figure 11 for record and comparison.

The significant differences appear to be that unlike the value for , the value of  for the

integral of the data, , is at the limit of the expected range, 1.01, and unlike the value for ,

.17, ~3.7 std deviations from the mean, the value of  is near the margin of clear distinction, .28,
~2.4 std. deviations, from the mean of measures consistent with random walk.

As a technical note, one might question the comparison of step variances for curves with irregular
point spacing.   In this data set samples were collected at twice the density during the period of

greatest interest, the time of rapid transition.   Whether it is valid to use point spacing rather than

time spacing for determining an average value of H  depends on whether the result is
approximately a straight line since the ratios of variances would then all change in the same

proportion between scales.
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 (for integrals) indicate the noise is

masking some accumulative shape.

3.4 Shape Scale Display

Having determined a predominance of symmetric noise, the G. tumida data may then be
tentatively treated as representing a continuous curve with superimposed random noise.  Figures

12 & 13 show initial noise reduction and iterated Gaussian smoothing to demonstrate the

application of scale space methods to time series.   The curves for figure 12 were formed by first

applying k1, using a 17 data point spread to suppress random noise and represent the basic shape.

The point spacing of  the data was then regularized at .05 Myr and further shape smoothing was

done with a constant 5 point (.2 Myr) Gaussian kernel.

One might question using a number of points to define the range for the initial smoothing and a
fixed period for the later smoothing iterations.   The initial smoothing is for the purpose of noise
suppression. Once that has been done the reason for further smoothing is not noise suppression,

but shape suppression, using algorithms designed for uniform point spacing.   The concern is that

the spacing of the data points varies widely, as more samples were taken in the period of greatest

interest.   The initial noise suppression based on a fixed point spread does result in non-uniform

suppression of the underlying shapes that may be present.  The shapes in the periods of widely

spaced points (6.5 to 5.5 ma and 5 to 2 ma) are more suppressed than those in the period of most

frequent points (5.5 to 5 ma).   The alternate choice would have been to regularize point spacing

first, resulting in exaggerated shape suppression in the period of most interest.   Inspection of the

results of both approaches6 indicates that regularizing the point spacing first results in a significant

misstatement of the duration of the transition event.
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Whether the smoothing was actually valid depends on whether the underlying shape and it's
characteristics are recognizable.   This might be accomplished by matching a patterned sequence

of inflection points to those in other environmental measures, demonstrating a system of corollary

factors.   Here, one may recognize in the derivative of U4 in figure 12, the classic form of a

triggered change of state, a clear individual event of acceleration and deceleration connecting

periods with distinctly different ranges of fluctuation.   The same suggestion can be gleaned from

the shape scale diagram (figure 13), though this may be less clear due to the unfamiliarity of the

this type of data representation.

Figure 13 shows the movement and suppression of the inflection points of the curve with iterative
Gaussian smoothing.   The diagram demonstrates the endurance of each inflection point and the
order in which they vanish from the shape.   The curves shown were drawn by plotting the

location of each inflection point at each smoothing level and then manually fitting a b-spline to

pass through those points.  More sophisticated methods are available
7,12

 but this rudimentary

approach is equivalent for the present purpose.   The apparent shape scale boundaries at

approximately U1.5, U4.5, U64, and U1024 identify groups of successively more robust inflection

points.

The first two shape scales might represent real shapes in the underlying process, or residual effects
of noise.   It would be surprising if there were no residual effects of noise from a highly irregular

data set such as this.  That three pairs of inflection point traces in shape scale II drop out at about

the same time suggests that they represent a true scale of secondary fluctuation in the behavior.

The last inflection point to the right, starting from about 2.3 ma at U
1
 is of questionable

significance, being retained through 256 levels of smoothing perhaps only because the last point in

the sequence was atypical.    The smoothing kernel used retains the points near the ends by

reducing the point range of the kernel from the normal 5 to 3 to 0, so that the end points are fixed.
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As a result fluctuations near the ends are suppressed much more slowly and their retention at

higher levels of smoothing less significant.

The third shape scale represents the most robust shapes in the data.    The middle pair of inflection
points traces back to a dip in the curve shortly after the most rapid rise, seeming to indicate that

this feature is not statistical, but behavioral.   Referring back to the derivative curve in figure 12,
the shape scale evidence indicates that fluctuations following the singular peak in the curve at least

initially reflect behavioral oscillation.   At the fourth shape scale only one inflection point remains

corresponding to the  turning point of the apparent 'S' curve transition between relative steady

states.   This is the shape which makes the data interesting, positioned consistently at about 5.4 ma

coinciding with the peak of the first derivative spike in U
4
.

4  D i s c u s s i o n

The selected techniques reported on here serve to identify and interpret the invariant local
structure of derivative continuity in smooth shapes.   Derivative interpolation and smoothing

(§2.1) is oriented to low level feature detection, regularizing the higher derivative rates of change

in a sequence with minimal effect on gross shape.   Gaussian shape scale analysis is oriented to

hierarchical and higher level feature detection, systematically suppressing all shape in order to

reveal multiple inherent scales of shape and features of shape transcending all shape scales.   One

of the more troublesome aspects of natural system information is the difficulty of reading

behavioral states having multiple scales of irregular fluctuation.    Shape scale analysis seems well
suited for displaying that common characteristic of  natural systems in a manner that is both

directly intuitive and provides useful identifying traits for analysis.

As presented here, neither derivative reconstruction nor shape scale analysis is oriented to locating
discontinuities, but to distinguishing recognizable features within smooth shape.   In other hands

the analysis of Gaussian shape scale has been successfully used to improve the robustness of high

level corner detection in visual images12,13 and of minutiae detection in the analysis of

fingerprints
1
.    To resolve low level discontinuities, say discontinuities in second derivatives as

would occur at the connection between flat surfaces and connecting curves, derivative

reconstruction might be augmented with a means of adaptively enhancing discontinuities.    Some

efforts of this kind have been noted such as the use of shock filter image processing kernels4,14,

though whether this particular method would serve the purpose indicated has not yet been

determined.

Derivative reconstruction and shape scale analysis rely on one of the highly useful features of
nature, that distributed physical and behavioral connections can be read from the differential

structures of smooth shape.   Both images and time traces, however, typically include mixed

signals of various kinds, overlapping and intermittent subjects,the complex , fragmentary and

indirect effects of many things.    The difference scaling exponent H  (§2.2) was developed to help
distinguish between data sets in which noise reduction is a valid means of generalizing shape, and

those for which it is not.   Only a small sample of the extensive literature on the standard scaling

exponent H  and its other variations were examined, but no indication of a developed approach to

interpreting mixed signals5,11 was found.

Both indicators, however, and Hurst's original R/S form as well, do seem to cut through
conflicting appearances to expose the same particular hidden group of natural data patterns.

These include the finding by Hurst and Mandelbrot that there tends to be an essentially infinite

span of statistical interdependence in natural system records
10

.   It is somewhat speculative, but
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this could reflect the presence of systems which have both short and long term derivative

continuity, displaying multiple scales of relevant shape.
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