
  

ContDiv Principle v3 1 PFH draft 11/8/2008 

 

A  C o n t i n u i t y  &  D i v e r g e n c e  P r i n c i p l e   
( t h e  p h y s i c s  o f  ‘ l i t t l e  b a n g s ’  a n d  ‘ b i g  b o o m s ’ )  

 

 
Note: This is represents a theorem developed in 1993 and finalized in a 1995 paper1 

 

 

© Philip F. Henshaw   eco@synapse9.com 

 

1 .  C o n t i n u i t y  a n d  D i v e r g e n c e  
The form of mathematics needed for the physical sciences to become capable of exploring 
emergent phenomena in nature is approached here by asking what kind of expression would 
be needed to describe events that begin and end.    For continuity, the conservation laws then 
require change to proceed by ‘little bangs’ followed by ‘big booms’. 

The constraint of energy conservation can be shown to require derivative continuity in rates 
of change and for beginning or ending energy flows, and for that to then require divergent 
sequences to do it, eruptions of change one could call “big booms”.    It appears to be for 
much the same reason that a period of inflationary change needed to be hypothesized to start 
the “big bang” of the universe.  When you look for them you often easily find them.   
Emergence and development may be the larger part of change, disguised by our bad habits of 
thought in ignoring what simple “cause and effect” doesn’t explain. 

Many things in life and emergent phenomena such as organisms, storms or sparks etc, 
involve energy flows and other kinds of conserved change with definite beginnings and ends.     
Direct observation of those transitional periods of change, to the limits of our observation, 
generally reveal explorable processes of conserved change that diverge from anything else 
around them, not following cause & effect but emerging and developing locally.       They are 
almost never described that way by conventional science, though, for lack of a form of 
arithmetic to do it.   We don’t know how to connect divergent sequences with convergent 
ones.   We don’t know how to represent behaviors with no reliably conserved properties.  It’s 
a hurdle that has often been considered impossible or unscientific to even address.    This 
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approach opens a door for studying them through their conserved continuities of change 
instead. 

What seems to connect divergent processes in nature, missing from mathematics, is the 
environment in which they develop.   Processes in an environment develop independently 
until they run into something else, i.e. have a form of connection without prior determinism.     
In that context the apparent finality of such beginnings and endings combined with the 
continuity required for energy conservation can be shown to imply an unlimited hierarchy of 
physical system scales is needed.    It raises new questions, beyond our evidence, in a way 
consistent with the evidence at hand and pointing to where new discoveries can usually be 
made to confirm it.    It remains an open and interesting debating point whether the apparent 
finality in beginnings and endings in nature, to the limits of our evidence, is genuine.    
Perhaps only a preponderance of the evidence and the relative simplicity of the alternate 
explanations can provide a satisfying answer. 

The general mathematical questions of describing nature with divergent mathematical series 
may have been most thoroughly studied by Robert Rosen.   His short 1995 essay2 seems to 
clearly identify the use of mathematics absent ‘improper’ divergent sequences as central to 
his complaints about the scientific method.   He notes that by choosing to study only the 
behavior of convergent mathematical series science arbitrarily discards the study of divergent 
ones.    In his observation, both emergence in complex systems and in life are subjects only 
seen in divergent processes which science would need to use divergent sequences to study.    

The present theorem demonstrates that the beginnings and endings of energy flows requires 
divergent sequences to be described mathematically.  That identifies a key feature of life and 
emergence that a study of divergent sequences is needed for, substantiating Rosen’s 
complaint.     Because defining environments for equations may prove difficult and because 
the divergent processes of interest already have their own environments… a switch of method 
seems called for.   Instead of using math in isolation, a way to use it in reference to open 
system environments seems required.   One general way to do that, for example, might be to 
replace environmental parameters with strategic queries.   The greater immediate usefulness 
of the theorem is offering mathematical signatures that can be used to identify divergence in 
physical processes that are inevitably going to run into their own environments and be 
changed by it.    It raises new answerable questions about emergent processes of great 
interest. 
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2 .  L i m i t s  o f  C h a n g e  
The principle of energy conservation, that energy can not be created or destroyed but only 
moved from place to place will be shown to imply that such transfers can not occur 
instantaneously.    That implies a requirement for derivative continuity in both physical 
motion and other energy transfer processes.  It also forms a general implied requirement for 
continuity in organizational change for energetic physical systems, because energy transfer 
processes use the organization of physical systems to operate.    Organizational change in 
open systems seems generally indefinable and unmeasurable because it’s distributed and 
often embodied in passive environmental potentials that are hard to identify or measure.  
That’s what is usefully exposed by identifying the form of continuities connecting the dots.      

The demonstration that divergent sequences are required to enable physical processes to 
begin or end with continuity begins by presenting the basic conservation laws as a hierarchy.   
The conservation of energy, the conservation of momentum and the conservation of reaction 
forces are related as derivatives and integrals of each other, one law stated differently for 
scales, velocities and accelerations of change.    That one law can be represented as an infinite 
hierarchy of successive derivative laws.    The familiar statement of the three basic physical 
laws is shown in the first three equations in column a of table 2.2  “Conventional Form”.   
They are repeated in column b “Unified Form” altered by substituting derivatives of distance 
(s) for acceleration (a) and velocity (v), and in the case of energy conservation, the 
conventional term 2

2
1 v  is replaced by the integral of its derivative ( ∫ ⋅dvv ), a quantity 

having the same derivative rank as distance (s).     They all have the same form of statement; 
that the sum of each of the derivatives of energy does not change.    The general principle of 
continuity is then derived by successively differentiating as a limit and concluding that the 
sums of all derivative rates of energy flows within a closed system are conserved.    

To this point, little has been said about what is in the ‘closed system’ and how it might relate 
to the open systems in which we observe the behaviors of life and other things to begin and 
end.    If within the closed system there are visible and invisible regions, with energy 
appearing in one place from an unobservable source, the conservation laws tell you little 
about the bounding quantities of energy available.   They do tell you something about the 
bounding rates of change in energy flow though, which turns out to be quite useful.    The 
issue leads toward discovering how to identify behaviors exhibiting temporary conservation 
of organizational change, and how to use it as a temporary stand-in for energy flow.    In 
practice one very frequently has sound evidence that change is being conserved in a system 
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but no good information as to where or how.   Determining whether the system is displaying 
divergent or convergent developmental change offers a starting point for exploring that.      

Column c in table 2.2  “Limiting Rates”  lists physical limits of energy transfer, starting with 
the speed of light as the limiting velocity in line 2,  vj < c (3.2.2c).   Because it takes time for 
a derivative to accumulate change in an integral, as for an acceleration to change a velocity, 
the limits of one rate applies to the others.   That is shown in table 2.1 , as follows: 

For:   i, j, l, n - integers;  ki, ci, ui - constants; c speed of light 
m – mass; a-acceleration; v - velocity; s - distance; t - time  
r-rate; Δ-finite difference; d – differential 

2.1 Relation of Limiting Rates 
If, at the n’th derivative level r cn n<  2.1-0 

in any finite period  r r t kn n n= ⋅ ++1 Δ   

by substitution r t k cn n n+ ⋅ + <1 Δ  

and ( )r c k tn n n+ < − ÷1 Δ  

let ( )c k t cn n n− ÷ = +Δ 1  

so that 

at the n+1 derivative level r cn n+ +<1 1 2.1-1 

2.2 Laws of Conservation and Continuity 
 
 a) Conventional 

Form 
b) Unified  

Form 
c) Limiting 

Rates  
    

1. Conservation of Energy 
• sum of energies is constant 
• 0 derivative level 

kvm
i

jj =⋅∑ 2

2
1

 kdvvm
i

jj =⋅∑ ∫  s c t kj < ⋅ + 1  

    
2. Conservation of Momentum 
• sum of momentums is zero 
• 1st derivative level3 
 

0=⋅∑
i

jj vm  m
ds
dtj

j

i
∑ = 0 v cj <  

 

3. Conservation of Reactions  
• sum of forces is zero 
• 2nd derivative level 
 

0=⋅∑
i

jj am  m
d s

dtj
j

i

2

2 0∑ =  
 
a cj < 2  

4. Unnamed 
• Sum of 2nd accelerations zero 
• 3rd derivative level 

 
m

d s

dtj
j

i

3

3 0∑ =  
 
r cj < 2  
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5. Principle of Continuity 
• Sum of higher accelerations 

zero 
• n’th derivative level 
 

 
m

d s

dtj
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3 .  D i v e r g e n c e  i n  I n d i v i d u a l  E v e n t s    
We now consider some individual energy flow within an open system S.   You might 
represent that as the movement of a mass (m) which begins at rest.   A finite force (f) to move 
it can’t be applied instantaneously because that would imply a step change in acceleration, 
and an infinite force (2.2-2c), as well as the higher rates of change than allowed by the 
general principle of continuity (2.2-3c,4c,5c).    For it to develop any positive velocity its 
acceleration will need to have been positive for a finite period.    The same is then true for it 
to achieve a positive acceleration, it’s rate of increasing acceleration, and every other 
underlying acceleration, will need to have been positive for finite periods.     For there to be a 
change from rest to motion every underlying acceleration needs to have been maintained for a 
prior finite period during which all underlying rates are positive.   If they all start at zero and 
none can be infinite acceleration is not possible.   The implication is that accelerating 
anything from rest is either: a) impossible,  b)requires energy conservation to not always 
apply,  c) that nothing begins or ends or is ever at rest, or d) doing so requires a trick.    One 
of the plausible ‘trick’ ways to resolve the contradiction is for things that do begin and end to 
do so with divergent accelerations, a burst of development or “big boom”.    It would then be 
a demonstration to observe divergent accelerations and bursts of developmental change where 
motion or other energy transfer systems appear to begin and end.     

One class of mathematical functions that has derivatives of the same sign for finite periods 
and also closely associated with physical processes resulting in bursts of organizational 
change and energy release, are the exponentials.   They don’t quite satisfy the requirements, 
though, for not having any point of beginning or ending.   They can only be arbitrarily started 
and stopped with discontinuities that would violate the conservation laws.    What’s needed 
then for both change and continuity is an emergent exponential-like progression of some 
kind, appearing at each observable scale to begin with an implicit but possibly unobservable 
seed of change on a smaller time and energy scale.   That sounds a little fantastic, perhaps.   
Because the proof is an exercise in narrowing down the difference between what needs to be 
found and what is generally found, all that needs to be demonstrated here is scientifically 
useful progress in doing that.     
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For example, a fire may start with a spark, definitively, but that start may be unobservably 
small and brief relative to the scale and course of the fire.   Every scale of organization 
requires a different mode of description, because they each make different sense, and so it is 
rather natural for each mode of description to leave out the others.    Why each different mode 
of description leaves out the others is open to question, of course, but it could be a property of 
how we describe things, of our own mental models, rather than of the things being described.    
Continuity of change appears to imply that every scale of behavior requires other scales for 
their beginnings and endings to occur.   This principle that continuity seems to require 
invisible scales of behavior is not well recognized even if we do commonly see smaller 
undescribed functional scales of behavior in most kinds of behaviors.    We also commonly 
see exponential-like progressions at the beginning and end of all kinds of systems and 
processes seeming to have definite beginnings or ends.   It’s possible that it just means that 
each scale of organization needs its own separate process of development, another 
implication one could look for confirmation of.    

The polynomial form of an exponential function directly results from the successive 
integration of a constant.   A starting point is provided by an assumed event of a different 
kind on a smaller time and energy scale, providing a “seed” for a divergent process and the 
“little bang”  of explosive development to begin a larger system from “next to nothing” to 
satisfy the conservation laws.    Oddly, this “unhidden pattern” is clearly visible in large 
classes of systems and their way of  linking scales of organization, like fertilization for 
reproduction, or a spark to start a flame or an idea to start an industry, displaying divergent 
processes in-between.    This way of connecting scales of organization makes it theoretically 
possible to have smooth change with definite beginnings and ends.   The proof is as follows. 

For some large n, the nth derivative rate nr is taken as finite and between some lower 

and upper bound pair of constants representing the limiting propagation rates for the 
process of energy transfer:  

  nnn lru >>  3.1 

Integrating the nth derivative rate with integration constant cn-1 also chosen between 
some upper and lower bound limits of propagation rates for the process at that level 
of acceleration:  

  11 −− +⋅== ∫ nnnn ctrrr  3.2 

In general, as the number of derivative levels n increases and the number of times rn 

is integrated i equals n the form of polynomial expansion approaches that of an 
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exponential. 
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One of the further directions of exploration is to establish that there are particular upper and 
lower bound propagation rate limits, un and ln.  The universal limit used in 2.1 above to 
establish the form of sequence required is the universal propagation rate limit of the speed of 
light.   For any particular energy transfer process the starting ‘seed’ acceleration would not be 
arbitrary, but would have limits defined by the process itself, somewhere between the highest 
and lowest potential propagation rates for the larger scale process being considered.   For 
example, the bounding limits for propagating a fire are what break the chain.   At too high a 
rate of propagation a flame becomes an explosion and blows itself out.   At too low a rate a 
spark cools before igniting anything else.   Just looking for how that principle applies to any 
given process of beginning tends to be quite informative.     It provides a way to follow a lead 
and explore the whole domain of behaviors in which the process develops. 

With most observed event processes their beginning displays an exponential-like period 
rather than a simple exponential.   There’s no constraint in the above analysis requiring 
complex systems developing at constant rates, just that they be bounded within natural limits.    
Perhaps the more surprising result is the reverse implication, those organizational processes 
in nature identified by the divergent way they conserve their own accumulations, identify the 
emergence of conserved organization as a means of transforming energy, and a transitory 
form of energy themselves.    Where such questions lead may not be immediately clear, but a 
path for exploring them is provided. 

                                                           
1 Philip F Henshaw 1995 (Excerpt) “Reconstructing the physical continuity of events“; link 
http://www.synapse9.com/drafts/ ReconstCont-95_08.15.pdf    
  
2 Robert Rosen 1996  “On the Limitations of Scientific Knowledge”  in On the Limits to Scientific 
Knowledge, John Casti & Anders Karlqvist eds, Perseus; collecting ten papers presented a 1995 
Stockholm workshop of the same name sponsored by  the Swedish Academy of Sciences; link to 
scanned copy http://www.synapse9.com/ref/Rosen_On_Limitations_of_Sci.pdf  

3 Basic Related Formulas of Work for reference 
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 Work, Energy of accelerating a mass to a 
velocity 
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 Force corresponding to acceleration for a 
mass  (a first derivative of Work) 

 


